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Abstract

A constitutive three-dimensional (3D) damping model is derived for transversely isotropic material symmetry, using
the augmented Hooke’s law [Intl. J. Solids Struct. 32 (1995) 2835] as a starting point. The proposed material model is
tested numerically, via finite-element techniques, on a laminate structure built from stacked aluminium and Plexiglas
plates. Effective 3D transversely isotropic material properties are given in terms of homogeneous material damping
functions in connection with homogenised elastic laminate properties. Comparisons made between the results from the
elastic (undamped) eigenvalue problem of the detailed (layerwise) model of the laminate and the effective 3D elastic
model show that the homogenised model is reasonably accurate, in terms of predicted elastic eigenfrequencies for the
first 20 modes. The dynamic homogenisation process, with damping included, is evaluated in terms of forced vibration
response for the laminate structure, using effective transversely isotropic frequency dependent material properties. The
dynamic 3D effective homogeneous material model is found to simulate very closely the detailed model in the studied
frequency interval for the numerical test case. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Constitutive material damping modelling; Linear viscoelasticity; Transverse isotropy; Homogeneous materials; Laminate
structures; Finite element displacement modes; Modal analysis; Structural vibrations

1. Introduction

Combinations of different materials in the form of composite structures are commonly used in many
engineering applications, especially in the aerospace and automotive industries. One of the major benefits of
using composites, compared to standard metallic materials, is the high strength-to-weight ratio, resulting in
a low structural weight. The passive damping in traditional composite structures is higher than in standard
metallic materials but still quite low. In the field of vibro-acoustics, development of new combinations
of standard composites and highly damped materials of viscoelastic type are currently receiving increas-
ing attention in order to control structural vibrations and find cost efficient designs. For this purpose,
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numerical models and optimisation techniques are needed to predict the dynamic behaviour of general
(anisotropic) composite structures and minimise the amount of experimental testing needed. Refined theo-
retical models often result in increase of size and complexity of the model and the chosen solution method
is then often a trade off between details and maximum allowable model size. In this context, it is highly
attractive to use effective (macro-mechanical) models, defined as a homogeneous and generally anisotropic
representative volume of the composite structure with the interaction between structural details included at
a less refined constitutive level, in order to reduce the model size. Another desired feature in development
and use of different material models is the possibility and simplicity of extraction of material damping
parameters from vibration damping, observed in dynamic testing of assembled structures, such as layered
plates and composite structures.

The main objective of the present work is to derive a general (three-dimensional (3D)) constitutive
formulation, including damping, in case of transversely isotropic material symmetry, for vibro-acoustic
simulation of damped structural vibrations. This material symmetry is valid for stacked isotropic materials
and a selected class of composite laminates with quasi-isotropic behaviour. A full (state-of-the-art) treat-
ment of various aspects of damping modelling in composite structures are today available in the form
of many references and modern text books (e.g. Chandra et al., 1999; Gibson, 1990, 1994; Finegan and
Gibson, 1999; Sun and Lu, 1995). However, most applications are based on two-dimensional plate and shell
models. To the authors knowledge there are very few works published on 3D modelling of damped
composite plates, which also was confirmed in the review paper by Chandra et al. (1999).

The field of damping modelling of composite structures may be divided into two approaches. Methods
of the first type are based on the elastic—viscoelastic correspondence principle (Hashin, 1970; Christensen,
1979; Sun and Lu, 1995). In the literature, a number of advanced (viscoelastic) constitutive material models
have been proposed by Bagley and Torvik (1983), Lesieutre and Bianchini (1995), Barbero and Luciano
(1995) and Dovstam (1995), as the use of a simple constant damping loss factor model is inconsistent (non-
causal) and inadequate for highly damped real materials. A review on material damping and alternative
(linear) constitutive models, and a unified approach in the field of vibration modelling, may be found in the
recent paper by Dovstam (2000a).

The second type of models for modelling of damping in built-up structures is based on the so-called
strain energy method, introduced by Unger and Kerwin (1962). The loss factor is determined as the ratio
between the dissipation in the material to the energy stored in the material. The total damping (losses) in a
composite structure may then be given as a sum of the damping in each constituent element. In practice,
the strain energy method is evaluated in terms of modal strain energies at each resonance of the structure
(cf. Johnson and Kienholz, 1982; Hwang and Gibson, 1991; Saravanos and Chamis, 1991; Barrett, 1992;
Rikards et al., 1993, 1994; Saravanos, 1994; Saravanos and Pereira, 1995; Koo and Lee, 1995; Yarlagadda
and Lesieutre, 1995; Korjakin et al., 1998; Maher et al., 1999a,b). In the case of general geometry and
boundary conditions the strain energies are conveniently computed by using finite-element (FE) approxi-
mations. Modern theories often use higher-order deformation theories, to account for the transverse shear
and rotational inertia effects, as the classical plate theory is found to be inadequate in applications to thick-
section laminates. Another important aspect is the existence of coupling in laminates due to geometry,
orientation, stacking sequence, constituent layer properties and the vibration mode of interest. Topics
such as coupling and 3D effects (interlaminar stresses) on damping of laminates have been investigated
by Hwang and Gibson (1991, 1992a,b) and Hwang et al. (1992) by performing 3D analyses based on
the strain energy method and layerwise FE analysis on typical laminate structures. Further, there exists
another type of modal coupling, present also in homogeneous structures, due to the damping itself, pointed
out by Dovstam (1997). The last effect may be taken care of by using an unconditionally convergent
modal approach, proposed by Dovstam (1998, 2000b), and adopted in the proposed paper. This model-
ling technique provides a clear separation of pure elastic behaviour and (anelastic) damping behaviour.
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The 3D constitutive stress—strain relationship is based on linear irreversible thermodynamics and
expressed in the form of a generally anisotropic augmented Hooke’s law (Dovstam, 1995). The augmented
Hooke’s law (AHL) was explicitly formulated for the case of isotropic materials in terms of two material
damping functions (Dovstam, 1995). The technique was successfully applied to simulate vibrations of
real isotropic materials (Dalenbring, 2001a), and found to be particularly suitable for developing a gene-
ral experimental material damping estimation procedure (Dovstam and Dalenbring, 1997; Dalenbring,
1999).

In order to estimate material damping parameters (anelastic), the elastic (static) material parameters of
the structure need to be known. Methods for extraction of elastic material parameters of laminates are
usually based on two-dimensional plate and shell theories in connection with higher-order deformation
theory (cf. Reddy and Phan, 1985) and recently Khdeir and Reddy (1999), Carrera (2000) and Kant and
Swaminathan (2000). Alternative, 3D, effective anisotropic material models start with Postma (1955) and
Rytov (1956), in the field of geophysics, proposing effective solutions for wave propagation in infinite
periodically layered medium of two isotropic materials. Methods for extracting 3D elastic (static) material
parameters for layered media most often rely on the long wavelength assumption concerning the state of
stress and strain in each lamina, in connection with a constitutive model of the equivalent homogeneous
material. Each laminate is further assumed to be approximately infinite in extent or built from a very
large number of repeated layers, with each lamina thickness small compared to the global dimensions. The
effective elastic material moduli for general orthotropic material symmetry may then be given in a closed-
form “‘rule of mixture” as geometrically weighted averages of the constituent parts of the laminate struc-
ture, cf. Christensen (1979). Similar methods, for extraction of 3D effective elastic material moduli, have
been developed by Chou and Carleone (1972), Pagano (1974), Sun and Li (1988) and recently by Chen and
Tsai (1996) and Whitcomb and Noh (2000), by using the (first-order) approximation that interlaminar
shear stresses are constant through the laminate. Pagano (1969, 1970) showed that transverse stresses
calculated by using the classical laminated plate theory and invoking equilibrium considerations converge
to the exact solution (within the framework of linear theory of elasticity) when the thickness-aspect-ratio
increases, i.e., if the plate is sufficiently thin compared to other dimensions. The approach developed by Sun
and Li (1988) have been shown to be efficient and accurate both in terms of static and dynamic (undamped)
analysis of thick-section laminates by Sun et al. (1996). Roy and Tsai (1992) used exact solutions for three
boundary value problems to extract 3D effective homogenised material parameters. This procedure was
used to study the accuracy of different methods, for numerical extraction of 3D effective moduli, with
respect to the number of layers, thickness and stacking sequence, with special interest in the interlaminar
direction. Roy and Tsai (1992) conclude that the effective parameter estimation methods, referenced by
them, give accurate results for laminates built from more than 20 layers.

The main contributions of the present paper are: formulation of a new explicit constitutive damping
model for transversely isotropic material symmetry, with five corresponding material damping functions
(Section 2), and implementation of the new damping model in a refined unconditionally convergent modal
response model (Section 3), suitable for damping estimation.

The ability of the proposed material model is numerically tested on a typical thin laminate struc-
ture, comprised of two aluminium plates and one Plexiglas plate, by comparing the response of the ef-
fective (homogenised) FE model with the response of a corresponding detailed (layerwise) FE model.
Effective 3D (homogenised) elastic properties of the test structure are approximated by the method pro-
posed by Chen and Tsai (1996), for determination of effective transverse laminate properties, in connection
with use of the classical laminated plate theory for in-plane properties (cf. Sun and Li, 1988; Hyer, 1998).
The method adopted here for approximation of effective elastic material parameters is one possible choice;
any accurate 3D method that correctly accounts for the deformation in the laminate structure may thus be
used.
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2. Material damping model

A 3D, completely general, constitutive material model for small strain applications was proposed by
Dovstam (1995), with explicit expressions for the model parameters derived for the case of isotropic ma-
terial damping. The particular case of transversely isotropic material symmetry is considered here with the
plane of isotropy defined as the 1-2 plane (Fig. 1; (cf. Reddy, 1997)). This implies no restriction in the sense
that a transversely isotropic material may always be arbitrarily oriented with material moduli obtained by
appropriate transformations (or cyclic permutations). Matrices and variables not explicitly defined in the
text are defined in Appendices A and B. Following Dovstam, continuous material properties are then
formally given in the Laplace domain (s = i2nf and f is the current frequency of vibration) by an aug-
mented Hooke’s law:

T = H(x, s)E, (1)

H(x,s) = H(x) + Hy(x,s), (2)
where H,(x, s) defines the damping and the matrix H(x), with components H;;, denotes a generalised elastic
Hooke’s matrix and T and E the standard stress and engineering strain vectors respectively. The elasticities
of the material studied here may be defined by the five independent measurable engineering constants £y,
w1, E3, v31 and Gz;. Two of these five constitutive parameters correspond to in-plane (1)—(2) stresses and
strains. For transverse material isotropy, the material constants are defined by Young’s modulus E; (here
E, = E| from isotropy) and the Poisson’s ratio v,; (here v;; = v,; from isotropy) or, alternatively, the shear
modulus Gy, = E1/(2(1 + vz1)). The remaining out-of-plane material parameters are related to the trans-
verse stress and strain with the corresponding engineering constants given by the elastic transverse moduli
E;, Poisson’s ratio v3; (v3; = v3) and the shear modulus G;; (G3; = Gy;). The five independent elastic

material Hooke’s matrix components H;;, i, j = 1,2,...,6, expressed in terms of engineering constants (cf.
Christensen, 1979), are given by:
H = HyHy, + HoHy, + HisHys + HysHss + HegHg, (3)
Hy = Gz + K21, (4)
Hiy = =Gy + K, (5)
3

———
- 0

Fig. 1. A typical representative volume element of the [aluminium/Plexiglas]; test laminate structure.
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Hiz = 2v31K51, (6)

Hyy = E3 + 493,521, (7)

Hge = G, (8)
E

Ky = ! (9)

4(1 — V%lEl/Ej;) — EI/G12,

where k,; corresponds to the in-plane (1)—(2) elastic engineering bulk modulus.

The material damping, defined by the augmentation H,(x,s) in Eq. (2), is generated by a linear com-
bination of five independent, augmented Hooke’s material moduli, using coupling matrices F;, with cor-
responding material damping parameters a;, b, ¢;, d; and e,, defined in Appendix B. After some simple but
tedious algebraic manipulations it is possible to relate the augmentation H,(x,s) in Eq. (2) to the constant
matrices H;, in Eq. (3) as:

H, = di(s)HiHy + dia(s)HisHin + dis(s)HisHis + das(s)HysHis + dge () HeeHes, (10)
where the five material damping functions, dy(s), di2(s), di3(s), di3(s) and dg(s), are given as the sums:
]\/U (1)
Als 1))
d(s) = o, {4 =0} er, (11)
=1 (ﬁ[ + S) a
N i (0) (1)
dis(s) = 127 34V <(Hy /Hp)AY b € R, 12
12(s) 2+ s) { 12 < (Hii/H) 11} (12)
Na (1)
Ajss 1)
dis(s) = B2 4 eR, (13)
=1 (ﬁ[ + S) "
Na (1)
Ayys 0
dis(s) = 6y {A< > o} €R, (14)
=1 (ﬁl + S) ?
Na ()
Agls )}
des(s) = 66> {A( >0} €R (15)
° =1 (ﬁl + S) %

and Ag?, A§Q, Ag?, A(313) and A(élé) are “process amplitudes” with corresponding real positive relaxation fre-
quencies f8;, I =1,2,3,...,N,, and accordingly relaxation times t; = 1/f,. The damping functions d,(s)
and dj;(s), corresponding to the off-diagonal terms of the material matrix, may be negative but the process
amplitudes must be real (cf. Dovstam, 1995). Note here also (cf. Eq. (12)), that the amplitude A(llz) depends
on Hll) H12 and Agl])

The complex, frequency dependent, engineering moduli of the damped material are expressed in terms of
the AHL parameters as:

A 2(Hn (1 +di(s)) + Hia(1 + dia(s)))

El (S) - ) (16)
Hy3(14+da3(s)) | (Hu(1+dn (s)+Hip(1+d1a(s)))
E3(s) (Hy1 (14dy1 (s))—Hy2 (14+di2(s)))
E, (s)

V21 (s) -1, (17)

T HL(1+dn(s)) — Ho(1+ di(s))
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2HL(1 + diz(s5))°

ES(S) = H3(1 +ds(s)) — Hy (14 d(s)) + Hia(l +dia(s))’ Y
R _ H13(1 +d13(S))

V31 (s) = Hy (1 +dy(s)) + Hia(l +dia(s))’ (19)
Gy1(s) = Heo(1 + dgs(s)).- >

Here the elastic (static) material parameters are frequency independent. The frequency dependence of the
material parameters is defined by the five damping functions dy;(s), di2(s), di3(s), da3(s) and dgs(s) in Egs.
(11)—(15).

3. Modal vibration response model

Modal models have been shown to be particularly useful in material damping estimation (Dovstam and
Dalenbring, 1997; Dalenbring, 1999). The 3D modal vibration model introduced by Dovstam (1998,
2000b), is applicable for general continuously distributed material damping and boundary traction exci-
tation. It is explicitly shown below how modal damping may be defined, for the particular case of a
transversely isotropic material, as a linear combination of five damping functions and associated modal
weight factors.

Following Dovstam, the 3D displacement field u = u(x, ¢) is expanded (in the Laplace domain) in terms
of a generalised Fourier series:

ii(x,s) = icm(ﬁ)w(”’) (x), (21)

where {w(””(x)}:;1 constitutes a complete basis for 3D vector fields with locally (over the body) square
intergrable component fields. The real, 3D, elastic, displacement modes w™ (x) and corresponding eigen-
frequencies w,,, are defined as solutions to the corresponding continuous elastic eigenvalue problem, de-
fined by the generalised Hooke’s material matrix H in Eq. (2), homogeneous boundary conditions and the
geometry and mass distribution of the studied body. In applications the modes w”)(x) may be approxi-
mated by FE techniques.

Under the assumption of small modal coupling the Fourier coefficient spectra c,, (@), m = 1,2,3,..., may

be approximated as Dovstam (1998, 2000b) (cf. Appendix B for the case of generally coupled modes):

Fi'(s) _ Rxeow(x)
an (2 + 0% /(1 +8,(5)))  an(s®+ /(14 6,(s)))’

where a,, = 1 if mass normalised displacement modes are used. The modal force spectrum F E,"O (s) is defined
by the inner product (evaluated on the boundary) between the traction field and the modal displacement
w™ (x). In the case of a local force excitation in the k direction at point X, on the boundary, the modal force
spectrum F (am)(s) is determined by the force spectrum component Fj(x,,s) multiplied by the elastic modal
displacement component w" (x,).

The modal shift functions J,,(s), m =1,2,3,..., in Eq. (22):

Su(s) = 2\VB(s) + 13 d(s) + 2V e(s) + 155 als) + i e(s), (23)

are completely determined by the proposed set of material damping functions, defined below in Egs. (24)—
(28), and modal weight factors }(f}"). The weight factors ;{Ej'-") equal the fraction of the modal elastic strain

cn(U) & (22)
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energy corresponding to each independent (non-zero) modulus Hj; in Eq. (2) (cf. also Dovstam, 1997,
2000b), and may be approximated with good accuracy by post-processing discrete, undamped normal
modes computed using standard FE techniques.

The transversely isotropic material functions in Eq. (23), corresponding to Egs. (4)—(9) and Eqgs. (B.1)-
(B.8), are derived as:

(E3 — E3(S)) 4V31K21 (V31 — 2\731(S)) i 8\):2;11(7%1(1 — \721 (S))

a(s) = = - ° : 24

“ Es(s) E5(s) Ey(s)(E3 + 4v3 1) 24

b(s) = 4"31'6%1(%1 — 2031(s)) %K%(l — Va(s)) %G%z(l + a(s) 1, 25)
E5(s)(k21 + G12) Ei(s)(k2 + Gi2)  Ei(s)(k21 + G12)

C‘(S) _ (E3 + 4V§1K22(V31 — \331(5‘)) . 4V311AC21\A)31(S) 2K21(1A— \721(5')) _ 17 (26)

v31E3(s) Es(s) Ei(s)

d(s) = V3113, (V31 = 20 (s)) N 213, (1 = Vai(s))  2Gh(1+9ai(s)) 1 27)
E5(s) (121 — Gi2) E\(s)(xa1 — G12)  Ei(s)(21 — Gr2)

els) = w 28

(s) o) (28)

with the complex frequency dependent engineering material moduli explicitly defined by Eqgs. (16)—(20). It is
important to note here that the modal shift function J,,(s) is a structural property, Eq. (23), depending on
both geometry and material parameters. Note also that the structural modal shift functions, J,,(s) = 0,
m=1,2,3,..., are all zero if s = 0 (zero frequency) or alternatively if {a(s),b(s), c(s),d(s),e(s)} = 0 with
s # 0. For zero/vanishing damping the resulting response model (Egs. (21) and (22)) corresponds to the
elastic (undamped) problem.

4. Numerical test example
4.1. The aluminium—Plexiglas test laminate structure

A simple numerical model of a realistic laminate structure was constructed in order to evaluate the
proposed transversely isotropic material model for the homogenised medium. This material symmetry is
relevant for symmetric laminates built from isotropic materials, and therefore chosen in the present paper.
The test laminate structure was built by symmetric stacking of aluminium and Plexiglas plates, [Al/
PMMA];, with nominal elastic (static) data for each material given in Table 1. The geometry of the four-
layer aluminium—Plexiglas laminate, with nominal dimensions 520 mm x 300 mm x 6 mm and a thickness
of each aluminium and Plexiglas layer of 1.5 mm, is shown in Fig. 2.

Table 1

Measured® elastic data for Plexiglas and aluminium
Ea = 73000 MPa val = 0.326 par = 2795 kg/m?
EPMMA = 3440 MPa VPMMA — 0.382 PPMMA — 1181 kg/m3

% At room temperature.
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Fig. 2. Laminate geometry and FE boundaries. Evaluation points marked by numbers.

The dynamic system is characterised in terms of forced vibration responses, computed for different lo-
cations on the plate according to Fig. 4, with the excitation defined as a harmonic local force excitation
(normal to the surface) and the boundaries taken as stress-free. The type of frequency responses discussed
in the following will be receptances (cf. Ewins, 1986) defined as quotient spectra between vibration dis-
placements (at the response points) and the force excitation.

4.2. Effective three-dimensional elastic laminate properties

The test structure is used to investigate the ability to establish a dynamic model of a typical laminate
structure by defining a representative laminate volume element (Fig. 1) with effective (homogeneous) 3D
constitutive behaviour, a first approximation to macro-mechanics (Hashin, 1970). This model of the test
laminate structure is valid as long as local effects in the different layers may be neglected. The vibration
frequency interval where the effective model results in high macroscopic accuracy generally varies from case
to case, depending on geometry, orientation, stacking sequence and material properties. The vibration
frequency interval may alternatively be stated in terms of corresponding vibrational wavelengths.

In the following, it is described how the effective 3D elastic material parameters may be calculated from
known elasticities of the constituents of the test structure, given by nominal values in Table 2. For further
details see Appendix C. From the discussion in Section 1 it is evident that the effective (homogenised) 3D
homogeneous elastic properties, based on classical laminated plate theory and first-order shear deformation
theory (for transverse properties), are accurate in the case of thin laminates. A layered plate may be defined
“thin” if the local span-to-thickness ratio is greater than 20, according to Reddy (1997). The aluminium/
Plexiglas test laminate structure have a thickness aspect ratio of approximately 50 and may thus be con-
sidered as thin. 3D, elastic effective transverse laminate properties are here approximated according to Chen
and Tsai (1996) (Appendix C). Effective in-plane laminate properties are approximated by using the

Table 2
Calculated effective engineering transversely isotropic material constants for the symmetric homogenised aluminium-Plexiglas lami-
nate

Ey; = 64307 MPa vy = 0.329 p = 1992 kg/m?
E33 = 11398 MPa G31 = 2381 MPa V31 = 0.066
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Normalised effective material constants
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Fig. 3. Normalised effective in-plane material parameters, H; (o o o o) and Hj, (* % * %), using the classical laminated plate theory
(normalised with respect to the results from the 3D method proposed by Chen and Tsai (1996)).

classical laminated plate theory (cf. Ernie and Rizzo, 1970; Hyer, 1998), in order to account for the bending
effect in the laminate. Note here, according to Fig. 3, that the classical laminated plate theory gives the same
result, in terms of effective in-plane elasticity properties, as the method proposed by Chen and Tsai (1996)
when the number of laminae are large. The effective engineering constants are restricted to cases where the
actual state of deformation in the composite material closely resemble the deformation assumptions made
in the process of extraction of effective elastic parameters. A thorough investigation of assumptions made
and the effect of boundaries is out of the scope of the present paper (cf. Pipes and Pagano, 1970; Reddy,
1997).

It is important to stress again that the focus in this paper is on the combined viscoelastic material model,
based on the augmented Hooke’s law, presented in Section 2. The first-order approximation method
adopted here for extracting effective elastic material data is one possible choice. Alternative accurate (3D)
techniques, which account for the deformation in each lamina, may also be used.

4.3. Effective elastic modal data for the aluminium—plexiglas laminate

The FE model of the laminate structure comprised a total of 390 isoparametric 20-node volume elements
for the connected Plexiglas and aluminium layers, with four elements through the thickness. This FE model
is sufficiently accurate for our purpose, with respect to discretisation errors, checked by performing a
convergence test based on grid refinements. Possible shear locking was avoided by using proper element
thickness-aspect-ratios (cf. Reddy, 1997). The plate geometry and element mesh is shown in Fig. 2. Modal
data, in the form of 70 eigenvalues with corresponding eigenvectors and modal weight factors, were com-
puted in ASKA Acoustics, Goransson (1988), with eigenfrequency f7o = 5590 Hz. A set of eigenfrequencies
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Table 3
FE modal data for the effective homogenised aluminium-plexiglas laminate
Mode Eigen Eigen Relative Eigen frequency Relative
number (m) frequency* (Hz) frequency® (Hz) difference® (%) 3D (Hz) difference® (%)
7 129.9 131.7 1.4 130.0 0.1
8 135.5 136.0 0.4 135.9 0.3
9 303.5 306.3 0.9 305.0 0.5
10 355.3 361.1 1.6 356.5 0.3
11 401.4 411.3 2.5 402.8 0.3
12 488.4 500.2 2.4 491.1 0.6
13 541.1 549.4 1.5 544.9 0.7
14 669.1 680.7 1.7 674.3 0.8
15 727.9 749.8 3.0 733.9 0.8
16 869.7 886.4 2.0 877.2 1.0
17 970.4 991.8 2.2 981.7 1.2
18 1087.5 11234 3.3 1098.6 1.0
19 1132.8 1163.1 2.6 1145.2 1.1
20 1155.4 1193.2 3.2 1169.2 1.2

#Corresponding to the detailed FE model.
® Corresponding to classical laminated plate theory.
€ With respect to the detailed model.

was here chosen as a measure of the modelling accuracy as a change in stiffness most often will give a more
significant change in eigenfrequencies than in the corresponding mode shapes (cf. Maher, 1994; Chang,
1986; Carrera, 2000; Einarsson and Dalenbring, 2000).

The first 20 eigenfrequencies of the detailed (layerwise) FE model are compared with corresponding
eigenfrequencies using classical laminated plate theory (standard isoparametric eight-node plate elements)
and the proposed effective 3D anisotropic model (cf. Table 2). The result is presented in Table 3 together
with the relative eigenfrequency error for each mode compared to the detailed model. The effective 3D
material model is reasonably accurate, with a relative eigenfrequency difference of less than 1.2%, for the
first 20 modes. The wavelength of mode number 20 is approximately 200 mm for the test laminate structure
and consequently much larger than the laminate thickness (6 mm). There is an almost linear increase of the
relative eigenfrequency difference between the detailed FE-model and the effective model, for the first 20
modes. The effective 3D model starts to deviate at higher modes, where the deformations in the constituents
of the composite structure are different from those assumed in the homogenisation process.

The result from comparing eigenfrequencies, using the classical laminated plate theory and the corre-
sponding detailed (layerwise) 3D FE model, show that the relative eigenfrequency difference (cf. Table 3) do
not increase, with increasing mode number, in the same smooth way as when using the effective 3D model.
The maximum relative eigenfrequency difference is also a factor two times larger than for the effective 3D
model. The laminated plate theory may be improved by using higher-order interpolation of the displace-
ment field, e.g., higher-order deformation plate theories (Reddy and Phan, 1985). A higher-order inter-
polation of the displacement field, in the 3D case, may be simulated by increase of the number of elements.

The modal weight factors, given by values in Table 4, corresponding to the modal strain energy asso-
ciated with each independent, non-zero, elastic modulus, are essential in the definition of the modal re-
sponse model in Section 3. The modal weight factors corresponding to the off diagonal terms in the material
elasticity matrices (Eqgs. (A.6)—(A.10)) may become negative, which is the case for this particular laminate
structure, cf. Table 4. The sum of all five modal weight factors should for each mode be equal to one. The
dominant part of the elastic modal strain energy, for this particular structure, is associated with the modal
weight factor #\7’, for the first 20 modes (cf. Table 4).
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Table 4

Modal weight factors for the effective homogenised model
Mode number Modal weight factor
(m) A1 212 13 733 L6
7 1.2786 —0.2556 —0.0562 0.0281 0.0051
8 1.5041 —0.5270 —0.0046 0.0023 0.0252
9 1.4187 —0.4426 —0.0191 0.0095 0.0334
10 1.2662 —0.2581 —0.0543 0.0271 0.0191
11 1.1090 —0.0805 —0.0871 0.0435 0.0151
12 1.1436 —0.1363 —0.0753 0.0376 0.0304
13 1.3231 —0.3493 —0.0350 0.0175 0.0438
14 1.2970 —0.3240 —0.0393 0.0196 0.0467
15 1.0571 —0.0567 —0.0883 0.0441 0.0439
16 1.2562 —0.2925 —0.0438 0.0218 0.0583
17 1.2473 —0.2964 —0.0419 0.0208 0.0701
18 1.0277 —0.0354 —0.0912 0.0454 0.0534
19 1.1505 —0.1796 —0.0640 0.0319 0.0613
20 1.0505 —0.0738 —0.0829 0.0413 0.0649

4.4. Effective material model for the aluminium—Plexiglas laminate with damping

3D material damping may be introduced in the laminate structure according to Sections 2 and 3. First,
detailed direct FE calculations were performed by layerwise modelling, with constituent properties for each
separate isotropic material layer specified as given in Tables 1 and 5. Material damping was assigned only
to the Plexiglas part of the laminate structure, i.e., the aluminium part was treated as having negligible
damping. The material damping used for the Plexiglas part (cf. Dalenbring, 1999) is here “partly artificial”,
by modification of the process amplitudes (Table 6) to give a higher structural damping.

Secondly, the damped homogenised structure was defined as below. Effective damping parameter am-
plitudes were chosen by trial and error. This was done by repeated simulations with respect to changes in
damping properties and minimising the difference between the vibration response of the homogenised 3D
model and the corresponding detailed (layerwise) 3D FE model of the test laminate structure. The effective
material was assumed to have the same damping process relaxation frequencies /35, as the Plexiglas material
(cf. Tables 5 and 6). In addition, it was observed in this iterative process that a major part of the strain
energy is associated with the modal weight factors /ﬁ'{') It is important to stress that homogeneous material
damping parameters cannot be calculated from knowledge of the damping of the parts by means provided
in this paper. The homogeneous damping has to be defined as a constitutive property. The effective material
parameter values used here are given in Tables 2 and 6, and the damping function dj, (s) is plotted in Fig. 4.

Table 5
AHL damping parameters for Plexiglas®
AHL process number (/) Relaxation frequency Process amplitude
(B1/2m) (4J) (4))
1 1.59 x 107! 2.23 x 10 0
2 2.26 x 10 221 x 10 0
3 8.21 x 10 3.27 0
4 3.14 x 10? 1.00 x 1072 0
5 3.84 x 107 1.32x 10 0

#With modified process amplitudes.
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Table 6
AHL damping parameters® for the homogenised model
AHL process number (/) Relaxation frequency (f5,/2n) Process amplitude
) ()
1 1.59 x 107! 8.00 x 1072 6.00 x 10
2 2.26 x 10 1.20 x 107! 0
3 8.21 x 10 0 0
4 3.14 x 10? 0 0
5 3.84 x 10? 5.80 x 1072 0
aWith process amplitudes 4%, AYQ and Ag? are all zero.
Material damping function dﬂ(s)
0.3 T T T T T T
Re(d, (s))
, 02 .
s
=
g
g
E
2
©
3
i
0.1 b
Im(d, ,(s))
0 Il Il 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

Fig. 4. Effective material damping function dy; (s) (Egs. (10) and (11)) for the structure. The real (upper curve) and imaginary (lower
curve) parts of the anelastic part of the homogenised dynamic modulus are shown.

The damping function is presented for frequencies in the interval 100-1000 Hz, which includes the first 17
undamped eigenfrequencies of the structure (cf. Table 3). It is interesting to note that it is possible to
simulate the structural damping of the homogenised transversely isotropic material sufficiently accurate by
using only the material damping function, di;(s), (cf. Fig. 4) in Eq. (10). A general experimental estimation
procedure for effective (homogenised) damping parameters, in analogy with the method proposed by
Dovstam and Dalenbring (1997) and Dalenbring (1999), will be addressed in a forthcoming paper by
Dalenbring (2001b).

The accuracy of the effective (homogenised) 3D vibration model is assessed by comparison with the
corresponding detailed (layerwise) 3D FE model. The result from forced vibration response simulations,
using the detailed finite-element model and the corresponding effective 3D (transversely isotropic and
homogenised) generally coupled modal response model, at a selected number of points on the test structure
is shown in Figs. 5-9. The agreement between the detailed FE model and the effective modal response
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Fig. 5. Typical direct FE calculated (thin solid curve) transfer receptance FRF (response Rs; in z-direction at point 29 and excitation in
z-direction at point 287) for the laminate plate (with detailed modelling of the constituents) and corresponding effective coupled modal
response model (thick solid curve), in the frequency interval 100-1000 Hz.

model is generally very good, in the studied frequency interval 100-1000 Hz. The models are compared in
terms of vibration response amplitudes and damped resonance frequencies, corresponding to peaks in the
curves in Figs. 5-9. A slight difference, for increasing frequency of vibration, may be seen in Fig. 8. This
difference is probably due the details of the laminate structure, not accounted for in the effective model, at
higher frequencies.

Finally, the accuracy of the two homogenised (3D) modal models is investigated by comparisons with
the corresponding fully 3D homogenised FE model of test laminate structure. For comparison, also the
response from the detailed (layerwise) model is plotted in the same graph. Figs. 10-15 show that the
coupled modal model is in general very close to the result from the effective (homogeneous) FE model and
the detailed model. The uncoupled modal model (computationally efficient and thus suitable for damping
estimation) is found to be very accurate, except for response point number 115 (Fig. 11) in the frequency
range 450-550 Hz, which is close to an anti-resonance (Fig. 6). The effect of truncation in the modal
models, generally visible at frequencies close to an anti-resonance, is assumed to be limited due to the good
agreement between the detailed (non-modal) model and the corresponding coupled modal model. The
validity of the uncoupled modal model must be tested from case to case. The complex moduli used in the
numerical simulation are strictly valid only in the frequency range of estimation and the accuracy generally
varies from case to case, depending on geometry, stacking sequence and material properties.

5. Summary and conclusions

A 3D constitutive model is proposed for the case of transversely isotropic material symmetry. The
constitutive model is based on the augmented Hooke’s law, with the material damping described in terms of
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Receptance FRF, Response in point 115, Excitation at point 287
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Fig. 6. Typical direct FE calculated (thin solid curve) transfer receptance FRF (response Rs; in z-direction at point 115 and excitation
in z-direction at point 287) for the laminate plate (with detailed modelling of the constituents) and corresponding effective coupled
modal response model (thick solid curve), in the frequency interval 100-1000 Hz.

five frequency dependent damping functions. The material model is numerically tested on a symmetric
composite laminate structure with dimensions 520 mm x 300 mm x 6 mm, by a combination of two alu-
minium plates and one Plexiglas plate.

Effective 3D homogeneous elastic (static) material constants were derived from known material data
for each part of the composite laminate structure. A first-order approximation of effective elastic properties
were performed according to the method proposed by Chen and Tsai (1996), for transverse stiffness
properties, and using the classical laminated plate theory for in-plane properties, to account for the bending
effect in the laminate. The effective in-plane elastic constants calculated by the classical laminated plate
theory were found to converge to the values given by the method proposed by Chen and Tsai (1996) when
the number of laminae increases.

The results from the elastic eigenvalue analysis of the proposed effective (homogenised) model, ap-
proximated by FE techniques, were found to be in good agreement with the corresponding detailed FE
model for the first 20 modes, with a relative difference in eigenfrequency of less than 1.2%. The effective 3D
transversely isotropic material model was found to be two times more accurate, in terms of predicted
undamped eigenfrequencies, compared to classical laminated plate theory. It may also be seen that the
degree of correlation between the detailed finite-element solution and the effective 3D model decreases, with
increasing mode number. Differences in eigenfrequencies are expected as the actual deformation differs
from the state of deformation assumed in the homogenisation procedure, the first order approximation to
macro-mechanics.

Finally, forced vibration response calculations were made for the laminate structure using the 3D ef-
fective homogenised (dynamic) material models. The result, from comparisons with corresponding detailed
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10° T T T T T T T T

— Coupled modal (effective)
—— Direct FE (detailed)

10

Magnitude (m/N)
S

10

-8
1 0 1 1 1 L 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

Fig. 7. Typical direct FE calculated (thin solid curve) transfer receptance FRF (response Rs; in z-direction at point 203 and excitation
in z-direction at point 287) for the laminate plate (with detailed modelling of the constituents) and corresponding effective coupled
modal response model (thick solid curve), in the frequency interval 100-1000 Hz.

(layerwise) FE model, shows that the homogeneous laminate simulation of the test structure is very ac-
curate in the studied frequency interval.
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Appendix A. Definitions

The Cartesian matrix representations of the displacement field u, the symmetric stress field T and the
(infinitesimal) strain tensor field E respectively are defined as:

u=ux,t)=[u w ul, (A1)
TZ[UU Oy 033 012 023 0’31}T, (A.2)

I (A3)

E:[Sll & &3 2enn 263 2e3
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Fig. 8. Typical direct FE calculated (thin solid curve) transfer receptance FRF (response Rs; in z-direction at point 287 and excitation
in z-direction at point 287) for the laminate plate (with detailed modelling of the constituents) and corresponding effective coupled
modal response model (thick solid curve), in the frequency interval 100-1000 Hz.

1 ( Ou; Ouy
Eik _2{@xk+6x,-}7 (A4)

where u;, o; and &; are Cartesian vector and tensor components. The generalised transversely isotropic
Hooke’s law matrix, H, is formally given by:

Hy H, Hpj 0 0 0

Hy Hps 0 0 0

His 0 0 0
H= - A5
(Hll —le)/2 0 0 ( )

SYM Hes 0

Hes

with a possible factorisation, H = H;1Hy; + H;H, + Hi3Hys + HysHss + HegHgg, given by five matrices
defined as:

2 0 000 0

2 00 0 0

1 000 0
Hi =3 Lo ol (A.6)

SYM 00

0
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Fig. 9. Typical direct FE calculated (thin solid curve) transfer receptance FRF (response Rs; in z-direction at point 404 and excitation
in z-direction at point 287) for the laminate plate (with detailed modelling of the constituents) and corresponding effective coupled
modal response model (thick solid curve), in the frequency interval 100-1000 Hz.

0 2 0 0 0 0
0 0 0 0 0
1 0 0 0 0
le—z 10 0 (A7)
SYM 0 0
0
[0 0 1 0 0 0]
0 1 0 0 0
0 0 0
H13_ 0 0 0] (AS)
SYM 0 0
L 0_
[0 0 0 0 0 0]
0 0 0 0
1 0 0 0
H33: 0 0 0] (Ag)
SYM 0 0
L O_
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Receptance FRF, Response in point 29, Excitation at point 287
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Fig. 10. Typical direct FE calculated (o o o o) transfer receptance FRF (response R;; in z-direction at point 29 and excitation in z-
direction at point 287) for the laminate plate (with detailed modelling of the constituents). For comparisons the corresponding ef-
fective response models: direct FE (x * x %), coupled modal (solid curve) and uncoupled modal (dashed curve), in the frequency interval
100-200 Hz.

0 0 00 0O
0 0 0 0O
0 0 0O
Hg = 00 0 (A.10)
SYM 1 0
1
and the corresponding compliance matrix C (cf. Eq. (A.5)):
Ch Cnp Cp 0 0 0
Cu Ci 0 0 0
_ C 0 0 0
C=(H'= 33 A.ll
(H) 2ACH—Cn) 0 0 (A-11)
SYM Ces O
Cés
Appendix B. AHL and generally coupled modes
The augmented Hook’s law is (in the Laplace domain) given by Dovstam (1995):
Na
. s
H(x,s)=H+ Y ———FG,'F, B.1
() =H4 D g Re T (B.)
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Fig. 11. Typical direct FE calculated (o o o o) transfer receptance FRF (response R;; in z-direction at point 115 and excitation in z-
direction at point 287) for the laminate plate (with detailed modelling of the constituents). For comparisons the corresponding effective
response models: direct FE (x * % *), coupled modal (solid curve) and uncoupled modal (dashed curve), in the frequency interval
400-800 Hz.

where H corresponds to the elastic part and where material damping, from N, damping with processes
relaxation frequencies f, [1/s], is defined by real dissipation matrices G, and real coupling matrices F;. For
transversely isotropic material symmetry each coupling matrix is defined as:

F;=0b;-Hy1 +d;-Hizs +¢; - Hizs +a; - His + e; - Heg, (B.2)

where the material damping parameters are given by coefficients a,, b, ¢;, d; and e;. The matrices Hy;, Hi»,
H;, H;;3 and Hgg (defined in Appendix A) are associated with each independent, non-zero, modulus in the
elastic part H. The strength of the damping, in Eq. (B.1), is defined by:

F/G;IF/ = a<1[1> . H11 + 0(112) . H12 + LZ(lQ . H13 + ag[; . H33 + a(616) . H66, (B3)
with normalised “‘process amplitudes” A(l?, Ay, AY;, Ag? and AY, defined as:
Ay = al [Hy = (b] + €] +d7) [ (Hu), {Ai? > 0} €R, (B4)
AY =al)/Hyy = (2bid, + ) ) (H AN < (Hy/Hp)Al e R B.S
12 = a3 /Hio = (2bid) + ¢j) [(How), (A < (Hiu/Hip)) | €R, (B.5)
A =D Hy = ci(a + b+ d) ) (His), A €R (B.6)
13 = a3/t = cila + b+ d; 1300), A3 , .

Agg) = agl;/H'g = (Ll? + 2C%)/(H33OC]), {Ag? > O} S R, (B7)
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Fig. 12. Typical direct FE calculated (o o o o) transfer receptance FRF (response Rj; in z-direction at point 203 and excitation in z-
direction at point 287) for the laminate plate (with detailed modelling of the constituents). For comparisons the corresponding effective

response models: direct FE (x * * *), coupled modal (solid curve) and uncoupled modal (dashed curve), in the frequency interval
300400 Hz.

Agg = aélg/Héﬁ = 26?/(1—[660([)7 {A(616) = 0} € R. (Bg)

The generally coupled modal model (Dovstam, 1998, 2000b), is defined as:

(02 + 57) g — Z (HC,HE™ E")g,(T) = Fy", (B.9)

(& —

where a,, denotes the modal mass, wm non-zero eigenfrequency, gm modal stress coefficient (correspond-
ing to the stress Vector field T), F'" 5 ) modal force spectrum and E™ modal strain field number m. The
relation <HCAHE JE" > is defined as a LS(Q) inner product (cf. Dovstam, 2000b) where C, is the aug-
mentation, corresponding to H and H,, of the elastic compliance matrix C. The matrix field HC,H =

|HH(x,s)' — I|H is given, in terms of transversely isotropic material damping functions as:
HCAH = b(S)H]1H11 + d(S)H12H12 + C(S)H13H13 + a(s)H33H33 + e(S)H66H66~ (BIO)
The relationship (B.9) may then be stated in matrix form:
Bun Bn By By oo - - gl(i) Ezgl)
By, By . . R 2 (T) F(g)z)

A I (B.11)
B - - - gr(T) F({)m)
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Fig. 13. Typical direct FE calculated (o o o o) transfer receptance FRF (response Rs; in z-direction at point 287 and excitation in
z-direction at point 287) for the laminate plate (with detailed modelling of the constituents). For comparisons the corresponding ef-
fective response models: direct FE (x * * %), coupled modal (solid curve) and uncoupled modal (dashed curve), in the frequency interval
300-500 Hz.

a0 + {1+ L (HCHE™ E™) L] =m,

anwl

er = "
= (HC,HE"™ E")), r#m.

(B.12)
For non-zero frequencies the generalised Fourier coefficient ¢, (i) may be expressed in terms of the stress
mode coefficients, g,,(T):

Fom 2 5
ey =T ng (T (B.13)

m
a,s’:  §?

Appendix C. Approximation of effective three-dimensional elastic laminate properties

The effective in-plane engineering constants may then be approximated by the classical laminated plate
theory, by using standard laminate compliance matrices:

A= (A (C.1)

A
Vo1 = —l, (C2)

D' = (D)’ (C3)
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Receptance FRF, Response in point 404, Excitation at point 287
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Fig. 14. Typical direct FE calculated (o o o o) transfer receptance FRF (response Rj; in z-direction at point 404 and excitation in z-
direction at point 287) for the laminate plate (with detailed modelling of the constituents). For comparisons the corresponding effective
response models: direct FE (x * * %), coupled modal (solid curve) and uncoupled modal (dashed curve), in the frequency interval
300-500 Hz.

12
El 7]/[3—D,11’ (C.4)
E;
Gp=——, C.5
12 2(1 +V21) ( )

where v,; denotes the in-plane poisson’s ratio, Gy, the shear modulus, £, the in-plane flexural modulus
and /£ is the total laminate thickness. The matrix A, with components 4;; (i,j = 1,2,3), denotes the lami-
nate extension stiffness matrix and D, with components D;; (i,j = 1,2,3), denotes the laminate bending
stiffness matrix. The coupling between the bending stiffness and extension stiffness is given by the cou-
pling stiffness matrix B, B;; (i,j =1,2,3). In the case of symmetric laminates all components are zero
B;=0.

Remaining, effective (out-of-plane) material properties are calculated by adopting a 3D (first-order)
method, proposed by Chen and Tsai (1996), assuming that the distributions of in-plane strains and in-
terlaminar stresses are constant. The effective material elasticities are formally given by:

N -1

tk
Hy = Z 7o ) (C.6)
k=1 33
N H<k>
Hyz = His Ztkﬁa (C.7)

k=1 33
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Fig. 15. Typical direct FE calculated (o o o o) transfer receptance FRF (response R;; in z-direction at point 29 and excitation in z-
direction at point 287) for the laminate plate (with detailed modelling of the constituents). For comparisons the corresponding effective
response models: direct FE (x * * *), coupled modal (solid curve) and uncoupled modal (dashed curve), in the frequency interval
700-1000 Hz.

N
=1
k 3 k k
W ][ ot o)
H(k) H(k) C(k) C(k) ) :
65 66 65 66
where # = |z, —z|/h, (k=1,2,...,N), is the volume fraction of the kth lamina, with each lamina

stiffness component k transformed from the local material symmetry reference system, given by the
transformation matrix Q, H* = Qﬁ(k) (cf. Christensen, 1979), to the global laminate reference system.
Note that the compliance matrix, Eq. (C.12), components Css and Cgs are both zero in the case of trans-
versely isotropic material symmetry.

The effective (out-of-plane) elastic engineering material constants may then be calculated using the Egs.
(4)-(9) and (C.1)—~(C.9):

E;
(4 — E\/Gry)(Hi3/Hy) + E\/Hy'

(C.10)

E; =

V31 :;, (Cll)
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Hi
oy = 3 c.12
2 (Hz3 — E33) ( )

G31 = Heg, (C.13)

where these material parameters are related to the transverse stress and strain with the corresponding
engineering constants given by the elastic transverse moduli £3, Poisson’s ratio v3; (v3; = v3;) and the shear
modulus G31 (G31 = G23).
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